Im Gegensatz zu klassischen Regressionsmodellen, welche Grenzen im Datenraum ziehen und somit zu den diskriminierenden Modellen gezählt werden, verstehen sich generative Modelle – wie der Naive Bayes Klassifikator und ChatGPT – als solche, welche Daten mittels Verteilungen zusammenfassen und somit in der Lage sind neue Daten zu simulieren.
Die prozessorientierte Prognose unter Beizug einer Monte-Carlo Simulation ist Voraussetzung für einen ambitionierten Zielwert. Ist der Zielwert festgelegt, sind alle davon abgeleitete Grössen reine «davon» Planungen. Durch Kombination der Annahmen aus dem Plan und den gemessenen Daten ist eine neue Prognose zu erstellen und der Zielwert gegebenenfalls zu schärfen.